Multiscale modeling and characterization of granular matter From grain kinematics to continuum mechanics
نویسندگان
چکیده
Granular sands are characterized and modeled here by explicitly exploiting the discretecontinuum duality of granular matter. Grain-scale kinematics, obtained by shearing a sample under triaxial compression, are coupled with a recently proposed multiscale computational framework to model the behavior of the material without resorting to phenomenological evolution (hardening) laws. By doing this, complex material behavior is captured by extracting the evolution of key properties directly from the grain-scale mechanics and injecting it into a continuum description (e.g., elastoplasticity). The effectiveness of the method is showcased by two examples: one linking discrete element computations with finite elements and another example linking a triaxial compression experiment using computed tomography and digital image correlation with finite element computation. In both cases, dilatancy and friction are used as the fundamental plastic variables and are obtained directly from the grain kinematics. In the case of the result linked to the experiment, the onset and evolution of a persistent shear band is modeled, showing—for the first time—three-dimensional multiscale results in the postbifurcation regime with real materials and good quantitative agreement with experiments. & 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Multiscale ‘tomography-to-simulation’ framework for granular matter: the road ahead
A roadmap is presented to transition seamlessly from an image to a predictive computational model for granular materials. So far, constitutive modelling in granular materials has been based on macroscopic experimental observations. Here, the point of departure is the basic granular scale where kinematics, contact forces and fabric control the macroscopic mechanical behaviour of the material. Ne...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملGranular element method for computational particle mechanics
0045-7825/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.cma.2012.06.012 ⇑ Corresponding author. E-mail address: [email protected] (J.E. Andrad This paper presents a method within the family of the discrete element method (DEM) capable of accurately capturing grain shape by using Non-Uniform Rational Basis-Splines (NURBS). The new method, called GEM, bypasses one of the ...
متن کاملMultiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کاملFrom Granular Matter to Generalized Continuum∗
Following a cursory review and synthesis of multipolar continua, the rudiments of graph theory, and granular mechanics, a graph-theoretic, energy-based homogenization is proposed for the systematic derivation of multipolar stress and kinematics in granular media. This provides a weakly non-local hierarchy of multipolar field equations for quasi-static mechanics based on polynomial representatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010